35,253 research outputs found

    Poly-essential and general Hyperelastic World (brane) models

    Get PDF
    This article provides a unified treatment of an extensive category of non-linear classical field models whereby the universe is represented (perhaps as a brane in a higher dimensional background) in terms of a structure of a mathematically convenient type describable as hyperelastic, for which a complete set of equations of motion is provided just by the energy-momentum conservation law. Particular cases include those of a perfect fluid in quintessential backgrounds of various kinds, as well as models of the elastic solid kind that has been proposed to account for cosmic acceleration. It is shown how an appropriately generalised Hadamard operator can be used to construct a symplectic structure that controles the evolution of small perturbations, and that provides a characteristic equation governing the propagation of weak discontinuities of diverse (extrinsic and extrinsic) kinds. The special case of a poly-essential model - the k-essential analogue of an ordinary polytropic fluid - is examined and shown to be well behaved (like the fluid) only if the pressure to density ratio ww is positive.Comment: 16 pages Latex, Contrib. to 10th Peyresq Pysics Meeting, June 2005: Micro and Macro Structures of Spacetim

    The use of a simplified structural model as an aid in the strain gage calibration of a complex wing

    Get PDF
    The use of a relatively simple structural model to characterize the load responses of strain gages located on various spars of a delta wing is examined. Strains measured during a laboratory load calibration of a wing structure are compared with calculations obtained from a simplified structural analysis model. Calculated and measured influence coefficient plots that show the shear, bending, and torsion characteristics of typical strain gage bridges are presented. Typical influence coefficient plots are shown for several load equations to illustrate the derivation of the equations from the component strain gage bridges. A relatively simple structural model was found to be effective in predicting the general nature of strain distributions and influence coefficient plots. The analytical processes are shown to be an aid in obtaining a good load calibration. The analytical processes cannot, however, be used in lieu of an actual load calibration of an aircraft wing

    Application of fracture mechanics and half-cycle method to the prediction of fatigue life of B-52 aircraft pylon components

    Get PDF
    Stress intensity levels at various parts of the NASA B-52 carrier aircraft pylon were examined for the case when the pylon store was the space shuttle solid rocket booster drop test vehicle. Eight critical stress points were selected for the pylon fatigue analysis. Using fracture mechanics and the half-cycle theory (directly or indirectly) for the calculations of fatigue-crack growth ,the remaining fatigue life (number of flights left) was estimated for each critical part. It was found that the two rear hooks had relatively short fatigue life and that the front hook had the shortest fatigue life of all the parts analyzed. The rest of the pylon parts were found to be noncritical because of their extremely long fatigue life associated with the low operational stress levels

    Bogomol'nyi Limit For Magnetic Vortices In Rotating Superconductor

    Full text link
    This work is the sequel of a previous investigation of stationary and cylindrically symmetric vortex configurations for simple models representing an incompressible non-relativistic superconductor in a rigidly rotating background. In the present paper, we carry out our analysis with a generalized Ginzburg-Landau description of the superconductor, which provides a prescription for the radial profile of the normal density within the vortex. Within this framework, it is shown that the Bogomol'nyi limit condition marking the boundary between type I and type II behavior is unaffected by the rotation of the background.Comment: 7 pages, uses RevTeX, submitted to Phys.Rev.

    Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program

    Get PDF
    The activities are reported of the NASA Biomedical Applications Team at Southwest Research Institute between 25 August, 1972 and 15 November, 1973. The program background and methodology are discussed along with the technology applications, and biomedical community impacts

    Quasiequilibrium black hole-neutron star binaries in general relativity

    Get PDF
    We construct quasiequilibrium sequences of black hole-neutron star binaries in general relativity. We solve Einstein's constraint equations in the conformal thin-sandwich formalism, subject to black hole boundary conditions imposed on the surface of an excised sphere, together with the relativistic equations of hydrostatic equilibrium. In contrast to our previous calculations we adopt a flat spatial background geometry and do not assume extreme mass ratios. We adopt a Gamma=2 polytropic equation of state and focus on irrotational neutron star configurations as well as approximately nonspinning black holes. We present numerical results for ratios of the black hole's irreducible mass to the neutron star's ADM mass in isolation of M_{irr}^{BH}/M_{ADM,0}^{NS} = 1, 2, 3, 5, and 10. We consider neutron stars of baryon rest mass M_B^{NS}/M_B^{max} = 83% and 56%, where M_B^{max} is the maximum allowed rest mass of a spherical star in isolation for our equation of state. For these sequences, we locate the onset of tidal disruption and, in cases with sufficiently large mass ratios and neutron star compactions, the innermost stable circular orbit. We compare with previous results for black hole-neutron star binaries and find excellent agreement with third-order post-Newtonian results, especially for large binary separations. We also use our results to estimate the energy spectrum of the outgoing gravitational radiation emitted during the inspiral phase for these binaries.Comment: 17 pages, 15 figures, published in Phys. Rev.

    Engineering Negative Differential Conductance with the Cu(111) Surface State

    Full text link
    Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate electron tunneling from a C60-terminated tip into a Cu(111) surface. Tunneling between a C60 orbital and the Shockley surface states of copper is shown to produce negative differential conductance (NDC) contrary to conventional expectations. NDC can be tuned through barrier thickness or C60 orientation up to complete extinction. The orientation dependence of NDC is a result of a symmetry matching between the molecular tip and the surface states.Comment: 5 pages, 4 figures, 1 tabl

    Novel Rbfox2 isoforms associated with alternative exon usage in rat cortex and suprachiasmatic nucleus

    Get PDF
    Abstract Transcriptome diversity in adult neurons is partly mediated by RNA binding proteins (RBPs), including the RBFOX factors. RBFOX3/NeuN, a neuronal maturity marker, is strangely depleted in suprachiasmatic nucleus (SCN) neurons, and may be compensated by a change in Rbfox2 expression. In this study, we found no superficial changes in Rbfox2 expression in the SCN, but mRNA population analysis revealed a distinct SCN transcript profile that includes multiple novel Rbfox2 isoforms. Of eleven isoforms in SCN and cerebral cortex that exhibit exon variation across two protein domains, we found a 3-fold higher abundance of a novel (‘−12–40’) C-terminal domain (CTD)-variant in the SCN. This isoform embraces an alternative reading frame that imparts a 50% change in CTD protein sequence, and functional impairment of exon 7 exclusion activity in a RBFOX2-target, the L-type calcium channel gene, Cacna1c. We have also demonstrated functional correlates in SCN gene transcripts; inclusion of Cacna1c exon 7, and also exclusion of both NMDA receptor gene Grin1 exon 4, and Enah exon 12, all consistent with a change in SCN RBFOX activity. The demonstrated regional diversity of Rbfox2 in adult brain highlights the functional adaptability of this RBP, enabling neuronal specialization, and potentially responding to disease-related neuronal dysfunction
    • …
    corecore